ÖLFLEX® ROBOT 900 P

Abrasion- and oil-resistant PUR robot cable for dynamic bending and torsion motions

ÖLFLEX® ROBOT 900 P - Power and control cable for bending and torsional load in harsh environmental conditions

Info
Simultaneous bending and torsion
Torsion angle up to +/- 360 °/m

Benefits
Space-saving installation due to small cable diameters

Supplementary automation components from Lapp
Suitable for outdoor use
Cold-resistant
Mechanical resistance
Oil-resistant
Power chain
Torsion-resistant
UV-resistant

Last Update (03.07.2020)
©2020 Lapp Group - Technical changes reserved
Product Management www.lappkabel.de
You can find the current technical data in the corresponding data sheet.
PN 0456 / 02_03.16
ÖLFLEX® ROBOT 900 P

Increased durability under harsh conditions thanks to robust PUR outer sheath
Resistant to contact with many mineral oil-based lubricants, diluted acids, aqueous alkaline solutions and other chemical media
Wide temperature range for applications in harsh climatic environments

Application range
Industrial machinery and machine tools
Automated handling equipment
Automotive industry
In power chains or moving machine parts
Inside of dresspacks of buckling arm robots and for use for gantry robots

Product features
Abrasion and notch-resistant
Flame-retardant
High oil-resistance
Flexible at low temperatures
Low-adhesive surface

Norm references / Approvals
Designed for up to 5 million torsion cycles
For use in power chains: Please comply with assembly guideline Appendix T3
For travel distances up to 10 m

Product Make-up
Fine or extra-fine strands made of bare copper wire
Core insulation: TPE
Cores twisted in layers
Versions with additional center pair:
2 cores twisted to a pair, PTFE foil wrapping, layer of tinned copper wires
Wrapping of PTFE tape
PUR outer sheath, black (similar RAL 9005)

Technical Data
Classification ETIM 5:
ETIM 5.0 Class-ID: EC000104
ETIM 5.0 Class-Description: Control cable

Classification ETIM 6:
ETIM 6.0 Class-ID: EC000104
ETIM 6.0 Class-Description: Control cable

Core identification code:
Up to 0.34 mm²: DIN 47100 cores
From 0.5 mm²: black cores with white numbers, cores of screened pair (2 x 1.0) are marked with no. 1 + 2

Mutual capacitance:
C/C approx. 100 nF/km
C/S approx. 120 nF/km

Inductivity:
approx. 0.7 mH/km

Conductor stranding:
Fine wire or extra-fine wire

Torsion:
Torsion load max. ± 360 °/m

Minimum bending radius:
For flexible use: 15 x outer diameter
Fixed installation: 4 x outer diameter

Nominal voltage:
Up to 0.34 mm²: 48 V AC
From 0.5 mm² U0/U: 300/500 V

Last Update (03.07.2020)
©2020 Lapp Group - Technical changes reserved
Product Management www.lappkabel.de
You can find the current technical data in the corresponding data sheet.
PN 0456 / 02_03.16
ÖLFLEX® ROBOT 900 P

Test voltage: Up to 0.34 mm²: 1500 V
From 0.5 mm²: 3000 V

Protective conductor: G = with GN-YE protective conductor
X = without protective conductor

Temperature range: Flexing: -40°C to +80°C
Fixed installation: -50°C to +80°C

Note
Unless specified otherwise, the shown product values are nominal values at room temperature. Detailed values (e.g. tolerances) are available upon request.
Copper price basis: EUR 150/100 kg. Refer to catalogue appendix T17 for the definition and calculation of copper-related surcharges.
Please find our standard lengths at: www.lappkabel.de/en/cable-standardlengths
Packaging size: coil ≤ 30 kg or ≤ 250 m, otherwise drum
Please specify the preferred type of packaging (e.g. 1 x 500 m drum or 5 x 100 m coils).
Photographs and graphics are not to scale and do not represent detailed images of the respective products.
Prices are net prices without VAT and surcharges. Sale to business customers only.
<table>
<thead>
<tr>
<th>Article number</th>
<th>Number of cores and mm² per conductor</th>
<th>Outer diameter [mm]</th>
<th>Copper index (kg/km)</th>
<th>Weight (kg/km)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0028110</td>
<td>7 X 0.25</td>
<td>6.2</td>
<td>16.8</td>
<td>48</td>
</tr>
<tr>
<td>0028116</td>
<td>25 X 0.25</td>
<td>10.2</td>
<td>60</td>
<td>141</td>
</tr>
<tr>
<td>0028188</td>
<td>2 X 0.34</td>
<td>5.0</td>
<td>7</td>
<td>27</td>
</tr>
</tbody>
</table>

Numbered Cores

<table>
<thead>
<tr>
<th>Article number</th>
<th>Number of cores and mm² per conductor</th>
<th>Outer diameter [mm]</th>
<th>Copper index (kg/km)</th>
<th>Weight (kg/km)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0028145</td>
<td>18 G 0.5</td>
<td>11.2</td>
<td>86.4</td>
<td>120</td>
</tr>
<tr>
<td>0028146</td>
<td>25 G 0.5</td>
<td>13.3</td>
<td>120</td>
<td>254</td>
</tr>
<tr>
<td>0028160</td>
<td>4 G 0.75</td>
<td>6.6</td>
<td>28.8</td>
<td>63</td>
</tr>
<tr>
<td>0028164</td>
<td>14 G 0.75</td>
<td>11.2</td>
<td>100.8</td>
<td>199</td>
</tr>
<tr>
<td>0028170</td>
<td>2 X 1.0</td>
<td>6.2</td>
<td>19.2</td>
<td>47</td>
</tr>
<tr>
<td>0028171</td>
<td>3 G 1.0</td>
<td>6.5</td>
<td>29</td>
<td>61</td>
</tr>
<tr>
<td>0028172</td>
<td>4 G 1.0</td>
<td>7.0</td>
<td>38.4</td>
<td>76</td>
</tr>
<tr>
<td>0028174</td>
<td>7 G 1.0</td>
<td>9.3</td>
<td>67.2</td>
<td>131</td>
</tr>
<tr>
<td>0028176</td>
<td>12 G 1.0</td>
<td>11.5</td>
<td>115.2</td>
<td>216</td>
</tr>
<tr>
<td>0028185</td>
<td>16 G 1.0, (2 x 1.0)</td>
<td>16.0</td>
<td>195</td>
<td>376</td>
</tr>
<tr>
<td>0028178</td>
<td>18 G 1.0</td>
<td>13.2</td>
<td>172.8</td>
<td>287</td>
</tr>
<tr>
<td>0028186</td>
<td>23 G 1.0, (2 x 1.0)</td>
<td>17.3</td>
<td>262</td>
<td>470</td>
</tr>
<tr>
<td>0028180</td>
<td>25 G 1.0</td>
<td>16.4</td>
<td>240</td>
<td>433</td>
</tr>
<tr>
<td>0028190</td>
<td>34 G 1.0</td>
<td>19.9</td>
<td>326.4</td>
<td>571</td>
</tr>
<tr>
<td>0028191</td>
<td>41 G 1.0</td>
<td>22.3</td>
<td>393.6</td>
<td>705</td>
</tr>
<tr>
<td>0028198</td>
<td>18 G 1.5</td>
<td>15.8</td>
<td>259.2</td>
<td>446</td>
</tr>
<tr>
<td>0028181</td>
<td>3 G 2.5</td>
<td>9.3</td>
<td>72</td>
<td>136</td>
</tr>
<tr>
<td>0028182</td>
<td>4 G 2.5</td>
<td>10.1</td>
<td>96</td>
<td>171</td>
</tr>
<tr>
<td>0028400</td>
<td>3 G 16.0</td>
<td>21.4</td>
<td>460.8</td>
<td>721</td>
</tr>
<tr>
<td>0028187</td>
<td>3 G 25.0</td>
<td>26.2</td>
<td>720</td>
<td>1178</td>
</tr>
<tr>
<td>0028189</td>
<td>3 G 35.0</td>
<td>28.8</td>
<td>1008</td>
<td>1559</td>
</tr>
</tbody>
</table>